- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Castillo, S_Elizabeth (1)
-
Casto, Anna (1)
-
Chakrabarti, Ayan (1)
-
Fahlgren, Noah (1)
-
Gehan, Malia_A (1)
-
Gratacós, Gustavo (1)
-
Gutierrez, Jorge (1)
-
McLain, Lauren (1)
-
Mohanasundaram, Boominathan (1)
-
Panda, Kaushik (1)
-
Pandey, Sona (1)
-
Sheng, Hudanyun (1)
-
Slotkin, R_Keith (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2environment while transgenerational studies are rare.We aimed to determine transgenerational growth responses in plants after exposure to high CO2by investigating the direct progeny when returned to baseline CO2levels.We found that both the flowering plantArabidopsis thalianaand seedless nonvascular plantPhyscomitrium patenscontinue to display accelerated growth rates in the progeny of plants exposed to high CO2. We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response.More specifically, the pathway of RNA‐directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2exposure.more » « less
An official website of the United States government
